1 research outputs found

    Data-Driven Exploration of Coarse-Grained Equations: Harnessing Machine Learning

    Get PDF
    In scientific research, understanding and modeling physical systems often involves working with complex equations called Partial Differential Equations (PDEs). These equations are essential for describing the relationships between variables and their derivatives, allowing us to analyze a wide range of phenomena, from fluid dynamics to quantum mechanics. Traditionally, the discovery of PDEs relied on mathematical derivations and expert knowledge. However, the advent of data-driven approaches and machine learning (ML) techniques has transformed this process. By harnessing ML techniques and data analysis methods, data-driven approaches have revolutionized the task of uncovering complex equations that describe physical systems. The primary goal in this thesis is to develop methodologies that can automatically extract simplified equations by training models using available data. ML algorithms have the ability to learn underlying patterns and relationships within the data, making it possible to extract simplified equations that capture the essential behavior of the system. This study considers three distinct learning categories: black-box, gray-box, and white-box learning. The initial phase of the research focuses on black-box learning, where no prior information about the equations is available. Three different neural network architectures are explored: multi-layer perceptron (MLP), convolutional neural network (CNN), and a hybrid architecture combining CNN and long short-term memory (CNN-LSTM). These neural networks are applied to uncover the non-linear equations of motion associated with phase-field models, which include both non-conserved and conserved order parameters. The second architecture explored in this study addresses explicit equation discovery in gray-box learning scenarios, where a portion of the equation is unknown. The framework employs eXtended Physics-Informed Neural Networks (X-PINNs) and incorporates domain decomposition in space to uncover a segment of the widely-known Allen-Cahn equation. Specifically, the Laplacian part of the equation is assumed to be known, while the objective is to discover the non-linear component of the equation. Moreover, symbolic regression techniques are applied to deduce the precise mathematical expression for the unknown segment of the equation. Furthermore, the final part of the thesis focuses on white-box learning, aiming to uncover equations that offer a detailed understanding of the studied system. Specifically, a coarse parametric ordinary differential equation (ODE) is introduced to accurately capture the spreading radius behavior of Calcium-magnesium-aluminosilicate (CMAS) droplets. Through the utilization of the Physics-Informed Neural Network (PINN) framework, the parameters of this ODE are determined, facilitating precise estimation. The architecture is employed to discover the unknown parameters of the equation, assuming that all terms of the ODE are known. This approach significantly improves our comprehension of the spreading dynamics associated with CMAS droplets
    corecore